DATABASE
APPLICATIONS
ARCHETECTURE

David Dykstra, Igor Mandrichenko
STA meeting, June 25, 2014

Goals

- Support computing needs of experiments
- Develop short to medium term strategy — 3-5 years

- Trends
- Database are becoming more popular
- Data intensity
- Grid computing
- Massively parallel access
- Remote access

- Internet technologies
- Robust, reliable, scalable, manageable architecture for
data access

Web services, not direct access

- Fundamental idea:

- Do not allow direct access to the storage (database), put a web
service between the client and the storage

- Reuse technologies
developed for the Internet

- Protocols, interfaces,
libraries, tools, frameworks,
knowledge

- Decouple the client and
the storage

W Glient

Web Browser
GuUI

Cesvasoun | |mplementat|on
L_J"EST"""’ Resoute mgn, Hide the details, complexity
-------- Ry AP eb senvce and intensity of the storage
------------------- N, — communication behind the
Tt ' server
e — . .
— - Independent implementation
o other siorage of the client and the server

- Add resource
Direct access approach Web service approach man ag eme nt Iaye r

Current Architecture

g 2

Web Browser
Lacal cllent |

ceelocaa,

~
.

CSVIUSONXML
aver
REST/HTTP

_ Remote site/

Server
_ Local Site)

Optional
components

Maijor features

- Use of common Internet standards (W3C, IETF)
- HTTP, HTTPS, CSV, JSON, XML
- Common web applications development frameworks,
tools
- WSGI, Apache httpd, squid, etc.
- Redundant web services infrastructure
- Performance, availability, flexibility, resource management

- Modular design — optional components can be plugged in
or removed

Frontier

Started around 2004 for DO as a database web
application framework

Same idea: channel database communication through HTTP
No SQL communication, DB schema is hidden

Emphasis on URL caching
Currently is used as CDF Frontier

Redesigned for CMS

Send SQL over HTTP, expose schema to the client

Continued development
Option to hide schema from the client

Focus on site caching, client side multiplexing, robustness on large
scale

Maijor features

- Client side multiplexing
- Client chooses from multiple locations (caches) to request data from
+ Round-robin
- Primary/backup
- Multiple server sites
- WLCG site cache discovery standard and implementation — work in progress

- Additional layer of protocol on top of HTTP standard
- Frontier client can talk only to Frontier server

- Failover monitoring
- SQL over HTTP

- All of these features can be added to current architecture
without Frontier

Proposal

- If direct SQL access is required, use Frontier

- Add Frontier on top of the architecture when:
- Existing architecture reaches its scalability limits
- URL caching is possible and beneficial
- Caching infrastructure requires client side multiplexing

! Multiplexer
1 o

How to add Frontier

L ----------------
Fallover
! Skte URL Cache D‘ Local client ' monitor
4 1 ,// 4 ™
L Backup L
URL Cache URL Cache Remote client
Site URL Cache
Frontler Server
Database emote site
schema \ =/
knowledge

Data Server

Database
or other storage

Server

Local Site)

_44 Web Browser |

Local and remote clients
contain frontier_client,
libwda, and the application.

Site and backup URL
caches may be replicated.

D
End

- Remaining slides could be useful for the discussion but
are not part of the presentation.

Redundant Web Services Infrastructure

- Multiple redundant application and data servers, running
on real and virtual machines
- Performance
- Avalilability
- Access multiplexing
- HTTP redirector for interactive applications
- HTTP proxy for data applications

- Used to run about dozen different applications, data and
interactive

On caching

Request is the fundamental resource. Minimize the number of requests
coming through the system and hitting the database.

Caching: re-use the data, retrieved or computed previously
Can significantly improve system performance

Or can decrease the performance and increase the load on the resources if the
data is not cacheable

When caching is good:
Data must be a deterministic function of the request and the request time
Dependency on the request time must be slow
Cache preemption

Data do not change between subsequent requests
It is easier to save data than to re-retrieve or re-compute

Examples:
State of the detector for run N — cacheable
Current state of the detector — not cacheable

How to cache

- Client side
- Do not ask for same data twice
- Ask more than you immediately need and use it later
- Application dependent

- URL caching

- If URL is good key for data, use Internet technologies (caching proxy)
to cache data

- Application independent

- Server side caching

- Cache intermediate data and produce output from it
- Data = F(R) — not cacheable
- F = F(G(R)) but G(R) is cacheable
- Application dependent

